Derivation of R and X from S₂₁ Magnitude and Phase for a device placed in series between the two ports of a VNA

Calibration

During calibration we replace the device under test (DUT) with a short circuit. The reference current into Port B then becomes:

 $I_{cal} = V / 100$

Measurement

Let the DUT complex impedance be Z=R+iX, and let the total resistance in the VNA "series "loop" be r=R+100

Then magnitude of the current into Port B becomes: $I = V / SQRT(r^2 + X^2)$

The change in current magnitude between calibration and measurement results in:

 $|S_{21}| = 20.Log (1 / I_{cal}) = 20.Log [100 / SQRT(r^2 + X^2)]$ (a)

and

 S_{21} Phase = θ = -tan⁻¹ (X / r)(b) [Positive X causes lagging S21 phase]

Re-arranging (b): $X = -r.tan(\theta)$

Substituting this value of X in equation (a) gives:

 $|S_{21}| = 20.Log [100 / SQRT(r^2 + r^2.tan^2(\theta))] = 20.Log [100 / r.SQRT(1 + tan^2(\theta))]$

Re-arranging, and using the trig identity $1/SQRT(1 + tan^2(\theta)) = cos(\theta)$ gives: $10^{(|S^{21}|/20)} = 100.\cos(\theta) / r$

So: $r = 100.cos(\theta).10^{(-|S21|/20)}$

Then DUT R = r - 100 = $(100 \cdot \cos(\theta) \cdot 10^{(-|S^{21}|/20)}) - 100$

And finally:

DUT X = -r.tan (θ) = -(R+100).tan (θ)