"Additional Loss due to SWR"

Definitions:
Zload complex load impedance
Zin complex line input impedance
Zo complex line characteristic impedance
$l \quad$ line length
$\gamma \quad$ complex line attenuation constant
pload complex reflection coefficient looking into the load
pin complex reflection coefficient looking into the line
Iin complex current flowing into the line
Iload complex current flowing into the load
From Kumar "Microwave techniques - Transmission Lines" page 86; dividing equation (5.69) by equation (5.68) we get:

$$
\frac{\text { Iload }}{\text { Iin }}=\left[\frac{1-\rho \text { load }}{1-\rho \text { in }}\right] \cdot e^{(-\gamma l)}
$$

The term $e^{(-\gamma l)}$ represents the current attenuation into a matched load, so $\left[\frac{1-\rho \text { load }}{1-\rho \text { in }}\right]$ represents the additional multiplying factor attributable to the mismatched condition. This additional current multiplying factor - call it X - can be expanded and simplified as follows:

$$
\begin{aligned}
& X=\frac{1-\rho \text { load }}{1-\rho \text { in }} \\
& X=\frac{1-\frac{\text { Zload }-Z o}{\text { Zload }+ \text { Zo }}}{1-\frac{\text { Zin }- \text { Zo }}{\text { Zin }+ \text { Zo }}} \\
& X=\frac{\frac{2 . Z o}{Z l o a d+Z o}}{\frac{2 . Z o}{\text { Zin }+Z o}} \\
& X=\frac{\text { Zin }+ \text { Zo }}{\text { Zload }+Z o}
\end{aligned}
$$

To find the additional power multiplication factor, we must square X and also take account of the fact that Iin and Iload are flowing into different values of resistance. We then get the additional power multiplying factor as:

$$
\frac{\text { Rload }}{\text { Rin }} \cdot\left|\frac{Z i n+Z o}{Z l o a d+Z o}\right|^{2} \quad \text { or, expressed as additional loss (dB): } \quad-10 \cdot \log \left(\frac{\text { Rload }}{\text { Rin }} \cdot\left|\frac{Z i n+Z o}{Z l o a d+Z o}\right|^{2}\right)
$$

where Rin $=\mathfrak{R}($ Zin $)$ and Rload $=\mathfrak{R}($ Zload $)$

