"Additional Loss due to SWR"

Definitions:	
Zload	complex load impedance
Zin	complex line input impedance
Zo	complex line characteristic impedance
l	line length
γ	complex line attenuation constant
pload	complex reflection coefficient looking into the load
ρin	complex reflection coefficient looking into the line
İin	complex current flowing into the line
Iload	complex current flowing into the load

From Kumar "Microwave techniques - Transmission Lines" page 86; dividing equation (5.69) by equation (5.68) we get:

$$\frac{Iload}{Iin} = \left[\frac{1-\rho \, load}{1-\rho \, in}\right]. e^{(-\gamma l)}$$

The term $e^{(-\gamma I)}$ represents the current attenuation into a matched load, so $\left[\frac{1-\rho \, load}{1-\rho \, in}\right]$ represents the additional multiplying factor attributable to the mismatched condition.

This additional current multiplying factor - call it *X* - can be expanded and simplified as follows:

$$X = \frac{1 - \rho \log d}{1 - \rho \ln}$$
$$X = \frac{1 - \frac{Z \log d - Z o}{Z \log d + Z o}}{1 - \frac{Z \ln - Z o}{Z \ln + Z o}}$$
$$X = \frac{\frac{2.Z o}{Z \log d + Z o}}{\frac{2.Z o}{Z \ln + Z o}}$$
$$X = \frac{\frac{Z \ln + Z o}{Z \log d + Z o}}{Z \log d + Z o}$$

To find the additional <u>power</u> multiplication factor, we must square *X* and also take account of the fact that *lin* and *lload* are flowing into different values of resistance. We then get the additional <u>power</u> multiplying factor as:

$$\frac{Rload}{Rin} \cdot \left| \frac{Zin + Zo}{Zload + Zo} \right|^2 \text{ or, expressed as additional loss (dB): } -10.\text{Log}\left(\frac{Rload}{Rin} \cdot \left| \frac{Zin + Zo}{Zload + Zo} \right|^2 \right) \text{ where } Rin = \Re(Zin) \text{ and } Rload = \Re(Zload)$$

Steve Hunt (G3TXQ) October 2015